%0 Journal Article %T In vitro activity of ceftaroline against bacterial isolates causing skin and soft tissue and respiratory tract infections collected in Latin American countries, ATLAS program 2016-2020. %A Mohamed N %A Valdez RR %A Fandiño C %A Baudrit M %A Falci DR %A Murillo JDC %J J Glob Antimicrob Resist %V 36 %N 0 %D 2024 Mar 26 %M 38016592 %F 4.349 %R 10.1016/j.jgar.2023.11.006 %X OBJECTIVE: Ceftaroline, a broad-spectrum cephalosporin, has activity against Gram-positive and several Gram-negative bacteria (GNB). This study aimed to evaluate the antimicrobial activity of ceftaroline and comparators against isolates causing skin and soft tissue infections (SSTIs) and respiratory tract infections (RTIs) collected in Latin America (LATAM) in 2016-2020 as part of the Antimicrobial Testing Leadership and Surveillance program (ATLAS).
METHODS: Minimum inhibitory concentrations were determined using both Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria.
RESULTS: Ceftaroline demonstrated potent activity against methicillin-susceptible Staphylococcus aureus (CLSI/EUCAST: MIC90 0.25 mg/L; susceptibility 100%), whereas activity against methicillin-resistant S. aureus varied for SSTIs (MIC90 1 mg/L; susceptibility 92.5%) and RTIs isolates (MIC90 2 mg/L; susceptibility 72.9%) isolates. For Streptococcus pneumoniae, particularly penicillin-resistant isolates commonly causing respiratory infections, high ceftaroline activity (MIC90 0.25 mg/L; susceptibility 100%/98.4%) was noted. All isolates of β-hemolytic streptococci were susceptible to ceftaroline (S. agalactiae: MIC90 0.03 mg/L [SSTIs]; MIC90 0.015 mg/L (RTIs); susceptibility 100%; S. pyogenes: MIC90 0.008 mg/L; susceptibility 100%). Ceftaroline was highly active against Haemophilus influenzae, including β-lactamase positive isolates (MIC90 0.06 mg/L; susceptibility 100%/85.7%). Ceftaroline demonstrated high activity against non-ESBL-producing GNB (E. coli: MIC90 0.5 mg/L, susceptibility 91.9%; K. pneumoniae: MIC90 0.25 mg/L, susceptibility 95.1%; K. oxytoca, MIC90 0.5 mg/L; susceptibility 95.7%).
CONCLUSIONS: Ceftaroline was active against the recent collection of bacterial pathogens commonly causing SSTIs and RTIs in LATAM. Local and regional surveillance of antimicrobial resistance patterns are crucial to understand evolving resistance and guide treatment management.