%0 Journal Article %T A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. %A Wang Z %A Ma R %A Chen B %A Yu X %A Wang X %A Zuo X %A Liang B %A Yang J %J Biosens Bioelectron %V 244 %N 0 %D 2024 Jan 15 %M 37948915 %F 12.545 %R 10.1016/j.bios.2023.115805 %X Detecting unexploded landmines is critical due to the environmental pollution and potential humanitarian risks caused by buried landmines. Therefore, this study focused on developing a biosensor system capable of detecting explosives safely and efficiently. A novel transcription factor-based Escherichia coli biosensor was designed to detect 1,3-dinitrobenzene (1,3-DNB). The MexT transcription factor from Pseudomonas putida (P. putida) was identified as the fundamental sensing element in this biosensor. The study found that MexT positively regulated the transcription of PP_2827 by binding to the bidirectional promoter region between them, and significantly enhanced the expression of downstream genes under the condition of 1,3-DNB. The MexT-based biosensor for 1,3-DNB was developed by adopting different combinations of the mexT gene and promoters. The optimized biosensor demonstrated adequate sensitivity for detecting 0.1 μg/mL of 1,3-DNB in a liquid solution with satisfactory specificity and long-term stability. Subsequently, the MexT-based biosensor was integrated into a detection device to simulate the in-field exploration of explosives. The system exhibited a detection sensitivity of 0.5 mg/kg for 1,3-DNB in the sand, and realized the detection of on-site and large-scale area and the location of buried 1,3-DNB under the soil. The study provided a novel transcription factor-based bacterial biosensor and a complete system (China Earth Eye, CEE) for sensitive detection of 1,3-DNB. The good performance of this biosensor system can facilitate the development of accurate, on-site, and high-efficient exploration of explosives in real extensive minefields. Moreover, this 1,3-DNB biosensor can be complementary to the 2,4-DNT biosensor reported before, demonstrating its potential applications in military situations.