%0 Observational Study %T CXC chemokine ligand 13 and galectin-9 plasma levels collaboratively provide prediction of disease activity and progression-free survival in chronic lymphocytic leukemia. %A Ahmed HA %A Nafady A %A Ahmed EH %A Hassan EEN %A Soliman WGM %A Elbadry MI %A Allam AA %J Ann Hematol %V 103 %N 3 %D 2024 Mar 9 %M 37946029 %F 4.03 %R 10.1007/s00277-023-05540-8 %X The clinical outcome of lymphocytic leukemia (CLL) is quite heterogeneous. The purpose of this observational study was to investigate the clinical merit of measuring plasma galectin-9 and CXCL-13 concentrations as predictors of CLL activity, prognosis, and early indicators of therapeutic response. These biomarkers were compared with other prognostic indicators, progression-free survival (PFS), time to first treatment (TTT), and overall survival (OS) over a follow-up period (4 years). First, plasma galectin-9 and CXCL-13 concentrations were analyzed in CLL patients at the time of diagnosis as well as healthy controls. Compared to controls, CLL patients had significantly higher serum levels of CXCL-13 and galectin-9. Second, we observed that CLL patients with high soluble CXCL-13 and galectin-9 levels had advanced clinical stages, poor prognosis, 17p del, short PFS, short TTT, and therapy resistance. The levels of CXCL-13, β2-microglobulin, LDH, CD38%, and high grade of Rai-stage were all strongly correlated with the galectin-9 levels. Soluble CXCL-13 and galectin-9 had very good specificity and sensitivity in detecting CLL disease progression and high-risk patients with the superiority of galectin-9 over CXCL-13. Although the two biomarkers were equal in prediction of TTT and treatment response, the soluble CXCL13 was superior in prediction of OS. High CXCL-13 and galectin-9 plasma levels upon CLL diagnosis are associated with disease activity, progression, advanced clinical stages, short periods of PFS, short TTT, and unfavorable treatment response.