%0 Journal Article %T Metal Site and Size-Controlled BTC-Based MOF as Cysteine Oxidase Mimic for Self-Cascade Detection of Cysteine and Hg2. %A Liu J %A Chen J %A Wang Y %A Li J %J J Phys Chem B %V 127 %N 44 %D 2023 11 9 %M 37899617 %F 3.466 %R 10.1021/acs.jpcb.3c05874 %X Nanozyme-mediated strategy for sensing has been widely applied nowadays, in which the construction of a nanozyme cascade platform is an effective and challenging method to simulate the complexity and multifunctionality of natural systems. Herein, a simple and convenient self-cascade sensing platform was developed for the fluorescent detection of cysteine and Hg2+ by a BTC-based MOF through screening the metal sites and crystal sizes. By the introduction of polyvinylpyrrolidone, the as-prepared Cu-BTC possessed a metal center of Cu2+ and smaller size, which exhibited both cysteine oxidase- and peroxidase-like activities. The dual enzymic characters of Cu-BTC made a self-cascade reaction occur during which cysteine was first oxidized to cystine and generated H2O2 in the presence of O2, then H2O2 was decomposed into ·OH, and finally the ·OH triggered the turn-on fluorescence of Cu-BTC. Based on the self-cascade reactions and high affinity of Hg2+ and -SH within cysteine, a fluorescent method was developed to detect cysteine and Hg2+ with a range of 0-160/0-15 μM and a limit of detection of 0.04/0.09 μM, respectively. This work reveals the important role of the Cu2+ center for mimicking cysteine oxidase and gives a feasible strategy for constructing simple self-cascade reactions.