%0 Journal Article %T Crystal chemistry and compressibility of Fe0.5Mg0.5Al0.5Si0.5O3 and FeMg0.5Si0.5O3 silicate perovskites at pressures up to 95 GPa. %A Koemets I %A Wang B %A Koemets E %A Ishii T %A Liu Z %A McCammon C %A Chanyshev A %A Katsura T %A Hanfland M %A Chumakov A %A Dubrovinsky L %J Front Chem %V 11 %N 0 %D 2023 %M 37867996 %F 5.545 %R 10.3389/fchem.2023.1258389 %X Silicate perovskite, with the mineral name bridgmanite, is the most abundant mineral in the Earth's lower mantle. We investigated crystal structures and equations of state of two perovskite-type Fe3+-rich phases, FeMg0.5Si0.5O3 and Fe0.5Mg0.5Al0.5Si0.5O3, at high pressures, employing single-crystal X-ray diffraction and synchrotron Mössbauer spectroscopy. We solved their crystal structures at high pressures and found that the FeMg0.5Si0.5O3 phase adopts a novel monoclinic double-perovskite structure with the space group of P21/n at pressures above 12 GPa, whereas the Fe0.5Mg0.5Al0.5Si0.5O3 phase adopts an orthorhombic perovskite structure with the space group of Pnma at pressures above 8 GPa. The pressure induces an iron spin transition for Fe3+ in a (Fe0.7,Mg0.3)O6 octahedral site of the FeMg0.5Si0.5O3 phase at pressures higher than 40 GPa. No iron spin transition was observed for the Fe0.5Mg0.5Al0.5Si0.5O3 phase as all Fe3+ ions are located in bicapped prism sites, which have larger volumes than an octahedral site of (Al0.5,Si0.5)O6.