%0 Journal Article %T Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora. %A Wang W %A Liu Y %A Duan S %A Bai N %A Zhu M %A Yang J %J Microbiol Res %V 278 %N 0 %D 2024 Jan 12 %M 37857124 %F 5.07 %R 10.1016/j.micres.2023.127516 %X Signal-mediated cell fusion is vital for colony development in filamentous fungi. Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that produces adhesive networks (traps) to capture nematodes. Here, we characterized Aoadv-1, Aoso, Aoham-6, and Aoham-5 of A. oligospora, homologs of proteins involved in cellular communication and fusion in the model fungus Neurospora crassa. The deletion of four genes resulted in the complete loss of cell fusion, and traps produced by mutants did not close to form mycelial rings but were still capable of capturing nematodes. The absence of these genes inhibits aerial mycelial extension, slows colony growth, and increases mycelial branching. In addition, the mutants showed reduced sporulation capacity and tolerance to oxidative stress, increased sensitivity to SDS, and disturbed lipid droplet accumulation and autophagy. In addition, transcriptome and metabolomic analyses suggested that Aoadv-1 and Aoso are involved in multiple cellular processes and secondary metabolism. Our results revealed that Aoadv-1, Aoso, Aoham-6, and Aoham-5 regulate mycelial growth and trap morphogenesis through cell fusion, which contributed to elucidating the molecular mechanisms of cellular communication regulating mycelial development and trap morphogenesis in NT fungi.