%0 Editorial %T The role of the N terminus of lipidated human Atg8-family proteins in cis-membrane association. %A Popelka H %A Klionsky DJ %J Autophagy %V 20 %N 1 %D 2024 01 17 %M 37848407 %F 13.391 %R 10.1080/15548627.2023.2272233 %X A multifunctional role of Atg8-family proteins (Atg8 from yeast and human LC3 and GABARAP subfamilies, all referred to here as ATG8s) in macroautophagy/autophagy is carried out by two protein domains, the N-terminal helical domain (NHD) and ubiquitin-like (UBL) domain. Previous studies showed that the NHD of PE-conjugated ATG8s mediates membrane hemifusion via a direct interaction with lipids in trans-membrane association, which would require the NHD in lipidated ATG8s to adopt a solvent-oriented, "open", conformation that unmasks a UBL domain surface needed for membrane tethering. A purpose of the "closed" conformation of the NHD masking the tethering surface on the UBL domain, a conformation seen in the most structures of non-lipidated ATG8s, remained elusive. A recent study by Zhang et al. discussed in this article, showed that the N terminus of lipidated human ATG8s adopts the "closed" conformation when it interacts with the membrane in cis-membrane association, i.e. with the same membrane ATG8 is anchored to. This finding suggests functions for two distinct conformations of the NHD in lipidated ATG8s and raises questions about determinants controlling cis- or trans-membrane associations of the NHD in ATG8-PE.Abbreviations: AIM, Atg8-family interacting motif; 3D-CLEM, three-dimensional correlative light and electron microscopy; FRET, Förster/fluorescence resonance energy transfer; LIR, LC3-interacting motif; MD, molecular dynamics; NHD, N-terminal helical domain; UBL, ubiquitin-like.