%0 Journal Article %T An in silico study of the effects of left ventricular assist device on right ventricular function and inter-ventricular interaction. %A Fan L %A Choy JS %A Lee S %A Campbell KS %A Wenk JF %A Kassab GS %A Burkhoff D %A Lee LC %J Artif Organs %V 47 %N 12 %D 2023 Dec 25 %M 37746896 %F 2.663 %R 10.1111/aor.14649 %X BACKGROUND: Left ventricular assist device (LVAD) is associated with a high incidence of right ventricular (RV) failure, which is hypothesized to be caused by the occurring inter-ventricular interactions when the LV is unloaded. Factors contributing to these interactions are unknown.
METHODS: We used computer modeling to investigate the impact of the HeartMate 3 LVAD on RV functions. The model was first calibrated against pressure-volume (PV) loops associated with a heart failure (HF) patient and validated against measurements of inter-ventricular interactions in animal experiments. The model was then applied to investigate the effects of LVAD on (1) RV chamber contractility indexed by V 60 derived from its end-systolic PV relationship, and (2) RV diastolic function indexed by V 20 derived from its end-diastolic PV relationship. We also investigated how septal wall thickness and regional contractility affect the impact of LVAD on RV function.
RESULTS: The impact of LVAD on RV chamber contractility is small at a pump speed lower than 4k rpm. At a higher pump speed between 4k and 9k rpm, however, RV chamber contractility is reduced (by ~3% at 6k rpm and ~10% at 9k rpm). The reduction of RV chamber contractility is greater with a thinner septal wall or with a lower myocardial contractility at the LV free wall, septum, or RV free wall.
CONCLUSIONS: RV chamber contractility is reduced at a pump speed higher than 4k rpm, and this reduction is greater with a thinner septal wall or lower regional myocardial contractility. Findings here may have clinical implications in identifying LVAD patients who may suffer from RV failure.