%0 Journal Article %T SLC12A8 mediates TKI resistance in EGFR-mutant lung cancer via PDK1/AKT axis. %A Huang F %A Cui J %A Wan J %A Yuan X %A Zhu Y %A Wu X %A Zuo W %A Zhao T %J J Cancer Res Clin Oncol %V 149 %N 18 %D 2023 Dec 19 %M 37725242 %F 4.322 %R 10.1007/s00432-023-05416-4 %X OBJECTIVE: Epidermal growth factor receptor (EGFR) mutation is a prominent driver of lung cancer. Tyrosine kinase inhibitors (TKIs) have shown efficacy in treating EGFR-mutant lung cancer, but the emergence of drug resistance poses a significant challenge. Recent research has highlighted solute carrier family 12 member 8 (SLC12A8) as one of the highly upregulated genes in various cancer types. However, its oncogenic function remains largely unexplored.
METHODS: 343 consecutive lung cancer patients were prospectively recruited and were followed for over 10 years. SLC12A8 expression in lung cancer tissues was measured by qPCR and was associated with patient survival. The association of SLC12A8 with TKI resistance was studied in in vitro EGFR-mutant lung cancer cell line as well as in in vivo xenograft tumor model. High-throughput kinome screening was employed to investigate SLC12A8-mediated oncogenic signaling pathway in lung cancer.
RESULTS: SLC12A8 is a predictive biomarker of poor prognosis in lung cancer, particularly in patients with EGFR mutations. SLC12A8 overexpression diminishes the effectiveness of TKIs in EGFR-mutant lung cancer, resulting in treatment failure and disease progression. More importantly, SLC12A8-induced TKI resistance is mediated by the PDK1/AKT signaling axis, while silencing SLC12A8 expression inhibits oncogenic PDK1/AKT signaling, restoring TKI sensitivity in lung cancer cells.
CONCLUSIONS: SLC12A8 mediates TKI resistance in EGFR-mutant lung cancer via PDK1/AKT axis. These findings not only advance our understanding of the molecular mechanisms driving TKI resistance, but also offer novel alternative strategies for the treatment of lung cancer.