%0 Journal Article %T Potential mechanistic roles of Interleukin-33 in rheumatoid arthritis. %A Ouyang T %A Song L %A Fang H %A Tan J %A Zheng Y %A Yi J %J Int Immunopharmacol %V 123 %N 0 %D 2023 Oct 8 %M 37562293 %F 5.714 %R 10.1016/j.intimp.2023.110770 %X Rheumatoid arthritis (RA) is a chronic autoimmune disease that occurs mainly in synovial joints, causing synovial inflammation and joint injury. If diagnosed and treated in time, the disease can be well controlled. However, in clinical practice, patients often fail to get timely and effective treatment due to misdiagnosis, missed diagnosis, and other reasons, resulting in deterioration of the condition and poor prognosis, seriously affecting the patient's quality of life. So far, the pathogenesis of RA is still unclear. In recent years, it has been found that the imbalance of cytokines plays a vital role in the occurrence and development of RA. Most RA-related cytokines are produced by immune cells, which bind to the specific receptors of effector cells through paracrine and autocrine pathways. The effect of cytokines on inflammation can be divided into pro-inflammatory and anti-inflammatory factors. When the impact of pro-inflammatory factors is more significant than anti-inflammatory factors, the condition of RA will be aggravated, resulting in more inflammatory severe reactions and immune disorders. Interleukin-33 (IL-33) is a new member of the interleukin-1(IL-1) family, and its receptor is suppression of tumorigenicity 2 (ST2). IL-33 plays a vital role in immune diseases such as RA by promoting a series of biochemical reactions in macrophages, mast cells, granulocytes, and other cells. This article aims to summarize the research progress of IL-33 in the pathogenesis of RA in recent years, discuss its role in the pathogenesis of RA, and provide new ideas for the prevention and treatment of RA in the future.