%0 Journal Article %T An 85-amino-acid polypeptide from Myrmeleon bore larvae (antlions) homologous to heat shock factor binding protein 1 with antiproliferative activity against MG-63 osteosarcoma cells in vitro. %A Ding R %A He M %A Huang H %A Chen J %A Huang M %A Su Y %J Asian Biomed (Res Rev News) %V 16 %N 4 %D 2022 Aug %M 37551169 %F 1.017 %R 10.2478/abm-2022-0024 %X UNASSIGNED: Venomous arthropods have substances in their venom with antiproliferative potential for neoplastic cells.
UNASSIGNED: To identify a polypeptide from Myrmeleon bore (antlion) with antiproliferative activity against neoplastic cells, and to elucidate the molecular mechanism of the activity.
UNASSIGNED: We used gel filtration and ion exchange chromatography to purify a polypeptide with antiproliferative activity against MG-63 human osteosarcoma cells from a proteinaceous extract of antlion. The polypeptide was sequenced and the stability of its antiproliferative activity was tested under a range of conditions in vitro. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the antiproliferative activity of the polypeptide against the MG-63 osteosarcoma cells and MC3T3-E1 mouse calvarial osteoblasts, which were used as a non-neoplastic control. We used western blotting to compare the levels of expression of heat shock transcription factor 1 (HSF1), heat shock protein 90 (HSP90), cyclin-dependent kinase 4 (CDK4), and protein kinase B alpha (ATK1) in MG-63 osteosarcoma cells and their mouse homologs in MC3T3-E1 osteoblasts after their treatment with the antlion antiproliferative polypeptide (ALAPP).
UNASSIGNED: The 85-amino-acid ALAPP has a 56% sequence identity with the human heat shock factor binding protein 1 (HSBP1). The antiproliferative activity of the polypeptide is relatively insensitive to temperature, pH, and metal ions. ALAPP has a strong concentration-dependent antiproliferative activity against MG-63 osteosarcoma cells compared with its effect on MC3T3-E1 osteoblasts. ALAPP significantly upregulates the expression of HSF1 in MC3T3-EL osteoblasts, but not in MG-63 osteosarcoma. ALAPP significantly downregulated the expression of HSP90, CDK4, and AKT1 expression in MG-63 osteosarcoma, but not in the osteoblasts.
UNASSIGNED: ALAPP has significant antiproliferative activity against MG-63 osteosarcoma cells, but not nonneoplastic MC3T3-E1 osteoblasts. We speculate that non-neoplastic cells may evade the antiproliferative effect of ALAPP by upregulating HSF1 to maintain their HSP90, CDK4, and AKT1 expression at a relatively constant level.