%0 Journal Article %T Construction of Aggregation-Induced Emission Molecule-MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection. %A Cui Y %A Zhao J %A Li H %J Nanomaterials (Basel) %V 13 %N 14 %D 2023 Jul 23 %M 37513149 %F 5.719 %R 10.3390/nano13142138 %X Alkaline phosphatase (ALP) is among the most studied enzymes by far, playing an important role in the metabolism of organisms and the regulation of protein activity. Herein, a label-free composite nanoprobe is constructed by combining inorganic nanomaterials and aggregation-induced emission (AIE) molecule to achieve highly sensitive and selective detection of ALP. Negatively charged 9,10-bis [2-(6-sulfonatopropoxyl) naphthylethenyl] anthracene (BSNVA) molecule is synthesized, which has the AIE performance and can be assembled on the surface of amino-SiO2 nanoparticles through electrostatic interaction for fluorescence enhancement. MnO2 nanosheets are rich in negative charges, enabling them to be wrapped on the surface of the amino-SiO2 nanosphere to shield the positive charge on its surface, making it impossible for BSNVA to accumulate on the surface and then weakening the bio-fluorescence of the system. Furthermore, with catalyzed substrates induced by ALP, generating ascorbic acid and the redox reaction between ascorbic acid and MnO2, the nanoprobe helps in realizing the high-sensitivity detection of ALP with a detection limit of 0.38 mU/mL. The proposed strategy requires no complex cleaning and modification processes and can overcome the quenching effect caused by the aggregation of traditional organic dyes, proving to be a simple, low-cost and "turn-on" fluorescent detection method for ALP.