%0 Journal Article %T Singlet oxygen-generating cell-adhesive glass surfaces for the fundamental investigation of plasma membrane-targeted photodynamic therapy. %A Doan VTH %A Komatsu Y %A Matsui H %A Kawazoe N %A Chen G %A Yoshitomi T %J Free Radic Biol Med %V 207 %N 0 %D 2023 10 25 %M 37499887 %F 8.101 %R 10.1016/j.freeradbiomed.2023.07.028 %X Recently, plasma membrane-targeted photodynamic therapy has attracted attention as an effective cancer immunotherapeutic strategy. However, the released photosensitizers do not only adhere to the plasma membrane but may also be internalized in the cytosol, in endosomes/lysosomes, hindering investigations of the effects of photosensitizers attached to the plasma membrane. In this study, we developed a cell culture dish with singlet oxygen-generating cell-adhesive glass surfaces that allows investigation of the effects of photosensitizers attached to the plasma membrane. For cell adhesion, poly[N-(3-aminopropyl)methacrylamide] conjugated with hematoporphyrin PA-HpD was immobilized on the glass surfaces. Singlet oxygen was produced from the PA-HpD-immobilized glass surface upon laser irradiation at 635 nm. When murine colon adenocarcinoma 26 (Colon-26) cells were cultured on the PA-HpD-immobilized surface, the cells were swollen and ruptured, leading to effective apoptotic cell death using laser irradiation at 635 nm. In addition, microvesicles of approximately 10 μm in diameter were released from the plasma membrane into the culture medium. These phenomena were due to the oxidation of lipids in the cellular membrane, caused by the plasma membrane-targeted photodynamic therapy. In contrast, these phenomena were not observed on poly[N-(3-aminopropyl)methacrylamide]-immobilized glass surfaces. These results indicate that cell culture dishes with singlet oxygen-generating cell-adhesive glass surfaces can be used to investigate fundamental mechanisms in plasma membrane-targeted photodynamic therapy.