%0 Journal Article %T Abnormal mRNA Splicing Effect of COL4A3 to COL4A5 Unclassified Variants. %A Zhang Y %A Wang X %A Zhou J %A Ding J %A Wang F %J Kidney Int Rep %V 8 %N 7 %D 2023 Jul %M 37441478 %F 6.234 %R 10.1016/j.ekir.2023.04.001 %X UNASSIGNED: Genetic diagnosis of Alport syndrome (AS), which results from pathogenic variants in COL4A3, COL4A4, or COL4A5 genes, is hindered by large numbers of unclassified variants detected using next-generation sequencing (NGS). We examined the impact on splicing of variants of uncertain significance in COL4A3 to COL4A5.
UNASSIGNED: Nine unrelated patients with clinical diagnosis or suspicion of AS were enrolled according to the criteria. Their clinical and genetic data were collected. Blood and urine samples were obtained from the patients and their family members. Sanger sequencing was used to confirm the 9 COL4A3 to COL4A5 unclassified variants identified by NGS. COL4A3 to COL4A5 mRNAs from urine were analyzed using targeted reverse transcription polymerase chain reaction and direct sequencing.
UNASSIGNED: Nine COL4A3 to COL4A5 unclassified variants were found to alter mRNAs splicing. Skipping of an exon or an exon fragment was induced by variants COL4A3 c.828+5G>A; COL4A4 c.3506-13_3528del; and COL4A5 c.451A>G (p. [Ile151Val]), c.2042-9 T>G, c.2689 G>C (p. [Glu897Gln]) and c.1033-10_1033-2delGGTAATAAA. Retention of an intron fragment was caused by variants COL4A3 c.3211-30G>T, and COL4A5 c.4316-20T>A and c.1033-10 G>A, respectively. The 9 families in this study obtained genetic diagnosis of AS, including 3 with autosomal recessive AS and 6 with X-linked AS.
UNASSIGNED: Our findings demonstrate that urine mRNA analysis facilitates the identification of abnormal splicing of unclassified variants in Alport genes, which provides evidence of routine use of RNA analysis to improve genetic diagnosis of AS.