%0 Randomized Controlled Trial %T Specific collagen peptides increase adaptions of patellar tendon morphology following 14-weeks of high-load resistance training: A randomized-controlled trial. %A Jerger S %A Centner C %A Lauber B %A Seynnes O %A Friedrich T %A Lolli D %A Gollhofer A %A König D %J Eur J Sport Sci %V 23 %N 12 %D 2023 Dec 4 %M 37424319 %F 3.98 %R 10.1080/17461391.2023.2232758 %X ABSTRACTThe purpose of this study was to investigate the effect of a supplementation with specific collagen peptides (SCP) combined with resistance training (RT) on changes in structural properties of the patellar tendon. Furthermore, tendon stiffness as well as maximal voluntary knee extension strength and cross-sectional area (CSA) of the rectus femoris muscle were assessed. In a randomized, placebo-controlled study, 50 healthy, moderately active male participants completed a 14-week resistance training program with three weekly sessions (70-85% of 1 repetition maximum [1RM]) for the knee extensors. While the SCP group received 5g of specific collagen peptides daily, the other group received the same amount of a placebo (PLA) supplement. The SCP supplementation led to a significant greater (p < 0.05) increase in patellar tendon CSA compared with the PLA group at 60% and 70% of the patellar tendon length starting from the proximal insertion. Both groups increased tendon stiffness (p < 0.01), muscle CSA (p < 0.05) and muscular strength (p < 0.001) throughout the intervention without significant differences between the groups. The current study shows that in healthy, moderately active men, supplementation of SCP in combination with RT leads to greater increase in patellar tendon CSA than RT alone. Since underlying mechanisms of tendon hypertrophy are currently unknown, further studies should investigate potential mechanisms causing the increased morphology adaptions following SCP supplementation.Trial registration: German Clinical Trials Register identifier: DRKS00029244..
A daily supplementation of 5 g of specific collagen peptides during 14 weeks of high-load resistance training increase patellar tendon hypertrophy compared to the same training regimen and placebo.The resistance training-induced CSA increase, which was most pronounced on proximal and medial patellar tendon sites, is uniformly potentiated along the entire tendon length by supplementation.Patellar tendon stiffness, CSA of the rectus femoris muscle and maximal voluntary knee extension strength increase due to training independently from supplementation.Increased tendon CSA as a result of a stimulating effect of the supplementation with specific collagen peptides on collagen synthesis might be able to decrease tendon stress and support tendon healing.