%0 Journal Article %T Cost-Effectiveness Analysis of Personalized Hypertension Prevention. %A Wang ST %A Lin TY %A Chen TH %A Chen SL %A Fann JC %J J Pers Med %V 13 %N 6 %D 2023 Jun 15 %M 37373989 %F 3.508 %R 10.3390/jpm13061001 %X BACKGROUND: While a population-wide strategy involving lifestyle changes and a high-risk strategy involving pharmacological interventions have been described, the recently proposed personalized medicine approach combining both strategies for the prevention of hypertension has increasingly gained attention. However, a cost-effectiveness analysis has been hardly addressed. This study was set out to build a Markov analytical decision model with a variety of prevention strategies in order to conduct an economic analysis for tailored preventative methods.
METHODS: The Markov decision model was used to perform an economic analysis of four preventative strategies: usual care, a population-based universal approach, a population-based high-risk approach, and a personalized strategy. In all decisions, the cohort in each prevention method was tracked throughout time to clarify the four-state model-based natural history of hypertension. Utilizing the Monte Carlo simulation, a probabilistic cost-effectiveness analysis was carried out. The incremental cost-effectiveness ratio was calculated to estimate the additional cost to save an additional life year.
RESULTS: The incremental cost-effectiveness ratios (ICER) for the personalized preventive strategy versus those for standard care were -USD 3317 per QALY gained, whereas they were, respectively, USD 120,781 and USD 53,223 per Quality-Adjusted Life Year (QALY) gained for the population-wide universal approach and the population-based high-risk approach. When the ceiling ratio of willingness to pay was USD 300,000, the probability of being cost-effective reached 74% for the universal approach and was almost certain for the personalized preventive strategy. The equivalent analysis for the personalized strategy against a general plan showed that the former was still cost-effective.
CONCLUSIONS: To support a health economic decision model for the financial evaluation of hypertension preventative measures, a personalized four-state natural history of hypertension model was created. The personalized preventive treatment appeared more cost-effective than population-based conventional care. These findings are extremely valuable for making hypertension-based health decisions based on precise preventive medication.