%0 Journal Article %T Haplotype-based analysis resolves missing heritability in oculocutaneous albinism type 1B. %A Loftus SK %A Gillis MF %A Lundh L %A Baxter LL %A Wedel JC %A Watkins-Chow DE %A Donovan FX %A %A Sergeev YV %A Oetting WS %A Pavan WJ %A Adams DR %J Am J Hum Genet %V 110 %N 7 %D 2023 07 6 %M 37327787 %F 11.043 %R 10.1016/j.ajhg.2023.05.012 %X Oculocutaneous albinism (OCA) is a rare disorder of pigment production. Affected individuals have variably decreased global pigmentation and visual-developmental changes that lead to low vision. OCA is notable for significant missing heritability, particularly among individuals with residual pigmentation. Tyrosinase (TYR) is the rate-limiting enzyme in melanin pigment biosynthesis and mutations that decrease enzyme function are one of the most common causes of OCA. We present the analysis of high-depth short-read TYR sequencing data for a cohort of 352 OCA probands, ∼50% of whom were previously sequenced without yielding a definitive diagnostic result. Our analysis identified 66 TYR single-nucleotide variants (SNVs) and small insertion/deletions (indels), 3 structural variants, and a rare haplotype comprised of two common frequency variants (p.Ser192Tyr and p.Arg402Gln) in cis-orientation, present in 149/352 OCA probands. We further describe a detailed analysis of the disease-causing haplotype, p.[Ser192Tyr; Arg402Gln] ("cis-YQ"). Haplotype analysis suggests that the cis-YQ allele arose by recombination and that multiple cis-YQ haplotypes are segregating in OCA-affected individuals and control populations. The cis-YQ allele is the most common disease-causing allele in our cohort, representing 19.1% (57/298) of TYR pathogenic alleles in individuals with type 1 (TYR-associated) OCA. Finally, among the 66 TYR variants, we found several additional alleles defined by a cis-oriented combination of minor, potentially hypomorph-producing alleles at common variant sites plus a second, rare pathogenic variant. Together, these results suggest that identification of phased variants for the full TYR locus are required for an exhaustive assessment for potentially disease-causing alleles.