%0 Journal Article %T Obtaining of ZnO/Fe2O3 Thin Nanostructured Films by AACVD for Detection of ppb-Concentrations of NO2 as a Biomarker of Lung Infections. %A Mokrushin AS %A Gorban YM %A Averin AA %A Gorobtsov PY %A Simonenko NP %A Lebedinskii YY %A Simonenko EP %A Kuznetsov NT %J Biosensors (Basel) %V 13 %N 4 %D 2023 Mar 31 %M 37185520 %F 5.743 %R 10.3390/bios13040445 %X ZnO/Fe2O3 nanocomposites with different concentration and thickness of the Fe2O3 layer were obtained by two-stage aerosol vapor deposition (AACVD). It was shown that the ZnO particles have a wurtzite structure with an average size of 51-66 nm, and the iron oxide particles on the ZnO surface have a hematite structure and an average size of 23-28 nm. According to EDX data, the iron content in the films was found to be 1.3-5.8 at.%. The optical properties of the obtained films were studied, and the optical band gap was found to be 3.16-3.26 eV. Gas-sensitive properties at 150-300 °C were studied using a wide group of analyte gases: CO, NH3, H2, CH4, C6H6, ethanol, acetone, and NO2. A high response to 100 ppm acetone and ethanol at 225-300 °C and a high and selective response to 300-2000 ppb NO2 at 175 °C were established. The effect of humidity on the magnitude and shape of the signal obtained upon NO2 detection was studied.