%0 Journal Article %T EDTA-functionalized silica nanoparticles as a conditioning agent for dentin bonding using etch-and-rinse technique. %A Yu J %A Li Y %A Liu X %A Huang H %A Wang Y %A Zhang Q %A Li Q %A Cao CY %J J Dent %V 134 %N 0 %D 2023 07 25 %M 37105434 %F 4.991 %R 10.1016/j.jdent.2023.104528 %X This study investigated the possibility of using ethylenediaminetetraacetic acid functionalized silica nanoparticles (EDTA-SiO2) as a dentin-conditioning agent using etch-and-rinse technique to promote the durability of dentin bonding.
The SiO2-EDTA were synthesized by N- [(3- trimethoxysilyl) propyl] ethylenediamine triacetic acid (EDTA-TMS) and SiO2 (50 nm), then characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The capacity of SiO2-EDTA to chelate calcium ions from dentin was examined by inductively coupled plasma-optic emission spectrometry (ICP-OES). The dentin surfaces conditioned with SiO2-EDTA were detected by field emission scanning electron microscopy (SEM), TEM and microhardness testing. For dentin bonding, dentin surfaces were adopted wet- or dry-bonding technique and bonded with adhesive (AdperTM Single Bond2) and applied composite resin (Filtek Z350) on them. The durability of dentin bonding was evaluated by mircotensile bond strength test, in-situ zymography and nanoleakage testing.
FTIR, TGA and XPS results showed that SiO2-EDTA contained N element and carboxyl groups. SEM, TEM and microhardness results indicated that SiO2-EDTA group created extrafibrillar demineralization and retained more intrafibrillar minerals within dentin surface. In the dentin bonding experiment, SiO2-EDTA group achieved acceptable bond strength, and reduced the activity of matrix metalloproteinase and nanoleakage along bonding interface.
It was possible to generate a feasible dentin conditioning agent (SiO2-EDTA), which could create dentin extrafibrillar demineralization and improve dentin bond durability.
This study introduces a new dentin conditioning scheme based on SiO2-EDTA to create extrafibrillar demineralization for dentin bonding. This strategy has the potential to be used in clinic to promote the life of restoration bonding.