%0 Journal Article %T Single-cell transcriptome analysis profiles the expression features of TMEM173 in BM cells of high-risk B-cell acute lymphoblastic leukemia. %A Cai Y %A Chen X %A Lu T %A Yu Z %A Hu S %A Liu J %A Zhou X %A Wang X %J BMC Cancer %V 23 %N 1 %D 2023 Apr 24 %M 37095455 %F 4.638 %R 10.1186/s12885-023-10830-5 %X BACKGROUND: As an essential regulator of type I interferon (IFN) response, TMEM173 participates in immune regulation and cell death induction. In recent studies, activation of TMEM173 has been regarded as a promising strategy for cancer immunotherapy. However, transcriptomic features of TMEM173 in B-cell acute lymphoblastic leukemia (B-ALL) remain elusive.
METHODS: Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were applied to determine the mRNA and protein levels of TMEM173 in peripheral blood mononuclear cells (PBMCs). TMEM173 mutation status was assessed by Sanger sequencing. Single-cell RNA sequencing (scRNA-seq) analysis was performed to explore the expression of TMEM173 in different types of bone marrow (BM) cells.
RESULTS: The mRNA and protein levels of TMEM173 were increased in PBMCs from B-ALL patients. Besides, frameshift mutation was presented in TMEM173 sequences of 2 B-ALL patients. ScRNA-seq analysis identified the specific transcriptome profiles of TMEM173 in the BM of high-risk B-ALL patients. Specifically, expression levels of TMEM173 in granulocytes, progenitor cells, mast cells, and plasmacytoid dendritic cells (pDCs) were higher than that in B cells, T cells, natural killer (NK) cells, and dendritic cells (DCs). Subset analysis further revealed that TMEM173 and pyroptosis effector gasdermin D (GSDMD) restrained in precursor-B (pre-B) cells with proliferative features, which expressed nuclear factor kappa-B (NF-κB), CD19, and Bruton's tyrosine kinase (BTK) during the progression of B-ALL. In addition, TMEM173 was associated with the functional activation of NK cells and DCs in B-ALL.
CONCLUSIONS: Our findings provide insights into the transcriptomic features of TMEM173 in the BM of high-risk B-ALL patients. Targeted activation of TMEM173 in specific cells might provide new therapeutic strategies for B-ALL patients.