%0 Journal Article %T Estimating future PM2.5-attributed acute myocardial infarction incident cases under climate mitigation and population change scenarios in Shandong Province, China. %A Ma X %A Zhang B %A Duan H %A Wu H %A Dong J %A Guo X %A Lu Z %A Ma J %A Xi B %J Ecotoxicol Environ Saf %V 256 %N 0 %D May 2023 12 %M 37059016 %F 7.129 %R 10.1016/j.ecoenv.2023.114893 %X BACKGROUND: The effects of fine particulate matter (PM2.5) on acute myocardial infarction (AMI) have been widely recognized. However, no studies have comprehensively evaluated future PM2.5-attributed AMI burdens under different climate mitigation and population change scenarios. We aimed to quantify the PM2.5-AMI association and estimate the future change in PM2.5-attributed AMI incident cases under six integrated scenarios in 2030 and 2060 in Shandong Province, China.
METHODS: Daily AMI incident cases and air pollutant data were collected from 136 districts/counties in Shandong Province from 2017 - 2019. A two-stage analysis with a distributed lag nonlinear model was conducted to quantify the baseline PM2.5-AMI association. The future change in PM2.5-attributed AMI incident cases was estimated by combining the fitted PM2.5-AMI association with the projected daily PM2.5 concentrations under six integrated scenarios. We further analyzed the factors driving changes in PM2.5-related AMI incidence using a decomposition method.
RESULTS: Each 10 μg/m3 increase in PM2.5 exposure at lag05 was related to an excess risk of 1.3 % (95 % confidence intervals: 0.9 %, 1.7 %) for AMI incidence from 2017 - 2019 in Shandong Province. The estimated total PM2.5-attributed AMI incident cases would increase by 10.9-125.9 % and 6.4-244.6 % under Scenarios 1 - 3 in 2030 and 2060, whereas they would decrease by 0.9-5.2 % and 33.0-46.2 % under Scenarios 5 - 6 in 2030 and 2060, respectively. Furthermore, the percentage increases in PM2.5-attributed female cases (2030: -0.3 % to 135.1 %; 2060: -33.2 % to 321.5 %) and aging cases (2030: 15.2-171.8 %; 2060: -21.5 % to 394.2 %) would wholly exceed those in male cases (2030: -1.8 % to 133.2 %; 2060: -41.1 % to 264.3 %) and non-aging cases (2030: -41.0 % to 45.7 %; 2060: -89.5 % to -17.0 %) under six scenarios in 2030 and 2060. Population aging is the main driver of increased PM2.5-related AMI incidence under Scenarios 1 - 3 in 2030 and 2060, while improved air quality can offset these negative effects of population aging under the implementation of the carbon neutrality and 1.5 °C targets.
CONCLUSIONS: The combination of ambitious climate policies (i.e., 1.5 °C warming limits and carbon neutrality targets) with stringent clean air policies is necessary to reduce the health impacts of air pollution in Shandong Province, China, regardless of population aging.