%0 Journal Article %T Comparative Evaluation of Pseudomonas aeruginosa Adhesion to a Poly-(2-Methacryloyloxyethyl Phosphorylcholine)-Modified Silicone Hydrogel Contact Lens. %A Harris V %A Pifer R %A Shannon P %A Crary M %J Vision (Basel) %V 7 %N 1 %D Mar 2023 21 %M 36977307 暂无%R 10.3390/vision7010027 %X Pseudomonas aeruginosa is the most common causative agent associated with microbial keratitis. During contact lens wear, pathogens may be introduced into the ocular environment, which might cause adverse events. Lehfilcon A is a recently developed contact lens with a water gradient surface composed of polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC). MPC is re-ported to impart anti-biofouling properties onto modified substrates. Therefore, in this in vitro experimental study, we tested the capability of lehfilcon A to resist adhesion by P. aeruginosa. Quantitative bacterial adhesion assays using five strains of P. aeruginosa were conducted to compare the adherence properties of lehfilcon A to five currently marketed silicone hydrogel (SiHy) contact lenses (comfilcon A, fanfilcon A, senofilcon A, senofilcon C, and samfilcon A). Compared to lehfilcon A, we observed 26.7 ± 8.8 times (p = 0.0028) more P. aeruginosa binding to comfilcon A, 30.0 ± 10.8 times (p = 0.0038) more binding to fanfilcon A, 18.2 ± 6.2 times (p = 0.0034) more binding to senofilcon A, 13.6 ± 3.9 times (p = 0.0019) more binding to senofilcon C, and 29.5 ± 11.8 times (p = 0.0057) more binding to samfilcon A. These results demonstrate that, for various strains of P. aeruginosa, lehfilcon A reduces bacterial adhesion compared to other contact lens materials.