%0 Journal Article %T Eco-friendly marine antifouling coating consisting of cellulose nanocrystals with bioinspired micromorphology. %A Duan Y %A Wu J %A Qi W %A Su R %J Carbohydr Polym %V 304 %N 0 %D Mar 2023 15 %M 36641170 %F 10.723 %R 10.1016/j.carbpol.2022.120504 %X Nanomaterial-incorporated surfaces with microstructures have been widely used for marine antifouling coatings, yet limited green antifouling coatings are currently available for sustainable application, given the potential environmental effects of nanomaterial-based nanofillers. Here, by using natural sourced nanomaterials (cellulose nanocrystals, CNCs) as nanofillers, a nanocomposite superhydrophobic coating was fabricated via a simple sol-gel synthesis method. Notably, CNCs were firstly applied in the marine antifouling realm to form uniform and stable coatings, which were condensed with hydroxyl groups of hydrolyzed tetrapropyl zirconate, 3-glycidyloxypropyltrimethoxysilane, and methyltrimethoxysilane. The synthesized coatings gained a biomimetic microscopic ridge-like surface, where more CNCs contents contributed to finer microstructures. As a result of the influence of CNCs content on surface wettability and antifouling properties, the coating with CNCs accounting for 20 wt% of the total solid content (CNC20) delivered the best antifouling performance. Furthermore, 90-day marine field tests verified CNC20's excellent antifouling ability, reducing fouling by 82 % in comparison to the control group. Such a biomimicry study provides a novel strategy for the development of environmentally friendly coatings with CNCs nanofillers.