%0 Journal Article %T Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives. %A Zhang Q %A Lyu S %J Appl Environ Microbiol %V 88 %N 18 %D 09 2022 22 %M 36073939 %F 5.005 %R 10.1128/aem.01212-22 %X In industrial production, the precursor of l-ascorbic acid (L-AA, also referred to as vitamin C), 2-keto-l-gulonic acid (2-KLG), is mainly produced using a classic two-step fermentation process performed by Gluconobacter oxydans, Bacillus megaterium, and Ketogulonicigenium vulgare. In the second step of the two-step fermentation process, the microbial consortium of K. vulgare and B. megaterium is used to achieve 2-KLG production. K. vulgare can transform l-sorbose to 2-KLG, but the yield of 2-KLG is much lower in the monoculture than in the coculture fermentation system. The relationship between the two strains is too diverse to analyze and has been a hot topic in the field of vitamin C fermentation. With the development of omics technology, the relationships between the two strains are well explained; nevertheless, the cell-cell communication is unclear. In this review, based on current omics results, the interactions between the two strains are summarized, and the potential cell-cell communications between the two strains are discussed, which will shed a light on the further understanding of synthetic consortia.