%0 Journal Article %T Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae - A review. %A Ben Othman H %A Pick FR %A Sakka Hlaili A %A Leboulanger C %J J Hazard Mater %V 441 %N 0 %D 01 2023 5 %M 36063709 %F 14.224 %R 10.1016/j.jhazmat.2022.129869 %X The first synthetic review of the PAHs effects on microalgae in experimental studies and aquatic ecosystems is provided. Phytoplankton and phytobenthos from marine and freshwaters show a wide range of sensitivities to PAHs, and can accumulate, transfer and degrade PAHs. Different toxicological endpoints including growth, chlorophyll a, in vivo fluorescence yield, membrane integrity, lipid content, anti-oxidant responses and gene expression are reported for both freshwater and marine microalgal species exposed to PAHs in culture and in natural assemblages. Photosynthesis, the key process carried out by microalgae appears to be the most impacted by PAH exposure. The effect of PAHs is both dose- and species-dependent and influenced by environmental factors such as UV radiation, temperature, and salinity. Under natural conditions, PAHs are typically present in mixtures and the toxic effects induced by single PAHs are not necessarily extrapolated to mixtures. Natural microalgal communities appear more sensitive to PAH contamination than microalgae in monospecific culture. To further refine the ecological risks linked to PAH exposure, species-sensitivity distributions (SSD) were analyzed based on published EC50s (half-maximal effective concentrations during exposure). HC5 (harmful concentration for 5% of the species assessed) was derived from SSD to provide a toxicity ranking for each of nine PAHs. The most water-soluble PAHs naphthalene (HC5 = 650 µg/L), acenaphthene (HC5 = 274 µg/L), and fluorene (HC5 = 76.8 µg/L) are the least toxic to microalgae, whereas benzo[a]pyrene (HC5 = 0.834 µg/L) appeared as the more toxic. No relationship between EC50 and cell biovolume was established, which does not support assumptions that larger microalgal cells are less sensitive to PAHs, and calls for further experimental evidence. The global PAHs HC5 for marine species was on average higher than for freshwater species (26.3 and 1.09 µg/L, respectively), suggesting a greater tolerance of marine phytoplankton towards PAHs. Nevertheless, an important number of experimental exposure concentrations and reported toxicity thresholds are above known PAHs solubility in water. The precise and accurate assessment of PAHs toxicity to microalgae will continue to benefit from more rigorously designed experimental studies, including control of exposure duration and biometric data on test microalgae.