%0 Journal Article %T A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. %A Moradi O %A Moradi O %A Moradi O %J Food Chem Toxicol %V 168 %N 0 %D Oct 2022 %M 36041662 %F 5.572 %R 10.1016/j.fct.2022.113391 %X Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.