%0 Journal Article %T Bacterial community structure and diversity in the rhizospheric soil of Robinia pseudoacacia and Juniperus sabina planted in iron tailings matrix. %A Chen X %A Chen H %A Zhao J %A Xin Y %A Li Y %J Environ Sci Pollut Res Int %V 0 %N 0 %D Jun 2022 28 %M 35763144 %F 5.19 %R 10.1007/s11356-022-21669-x %X Iron tailings matrix is deficient in nutrients, and phytoremediation is one of the effective methods to improve tailings nutrients. The response of phytoremediation to tailings microorganisms remains to be studied. The present study analyzed rhizospheric soil of two kinds of plants bacterial diversity and community structure and their relationship with soil environmental factors. The results indicate that the rhizospheric soil bacteria species of Robinia pseudoacacia and Juniperus sabina were not significantly different from that of bare tailings, but rhizospheric soil bacterial community compositions and abundance were significantly different from that of bare tailings. Canonical correlation analysis (CCA) showed that soil alkali-hydrolyzable nitrogen (AN), soil total nitrogen (TN), and soil organic matter (SOM) were the main environmental factors affecting bacterial community diversity. Spearman's correlation analysis showed that AN, TN, and SOM were significantly positively correlated with the relative abundance of Gemmatimonadetes and Nitrospirae, and were significantly negatively correlated with that of Firmicutes, Fusobacteria, and Bacteroidetes. FAPROTAX function prediction showed that the functional microbial communities of rhizospheric soil of the two plants were significantly different from those of bare tailings. Overall, the findings support an increase of microbial diversity, SOM, and nitrogen in rhizospheric soil of revegetated tailings compared to bare tailings. These results provide theoretical support for the development and application of phytoremediation in abandoned mines.