%0 Journal Article %T Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract. %A Färber I %A Krüger J %A Rocha C %A Armando F %A von Köckritz-Blickwede M %A Pöhlmann S %A Braun A %A Baumgärtner W %A Runft S %A Krüger N %J Viruses %V 14 %N 4 %D 04 2022 16 %M 35458558 %F 5.818 %R 10.3390/v14040828 %X Several animal species are susceptible to SARS-CoV-2 infection, as documented by case reports and serological and in vivo infection studies. However, the susceptibility of many animal species remains unknown. Furthermore, the expression patterns of SARS-CoV-2 entry factors, such as the receptor angiotensin-converting enzyme 2 (ACE2), as well as transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL), cellular proteases involved in SARS-CoV-2 spike protein activation, are largely unexplored in most species. Here, we generated primary cell cultures from the respiratory tract of domestic and wildlife animals to assess their susceptibility to SARS-CoV-2 infection. Additionally, the presence of ACE2, TMPRSS2 and CTSL within respiratory tract compartments was investigated in a range of animals, some with unknown susceptibility to SARS-CoV-2. Productive viral replication was observed in the nasal mucosa explants and precision-cut lung slices from dogs and hamsters, whereas culture models from ferrets and multiple ungulate species were non-permissive to infection. Overall, whereas TMPRSS2 and CTSL were equally expressed in the respiratory tract, the expression levels of ACE2 were more variable, suggesting that a restricted availability of ACE2 may contribute to reduced susceptibility. Summarized, the experimental infection of primary respiratory tract cell cultures, as well as an analysis of entry-factor distribution, enable screening for SARS-CoV-2 animal reservoirs.