%0 Journal Article %T A Transcriptome Insight During Early Fish Larval Development Followed by Starvation in Seriola rivoliana. %A Guerrero-Tortolero DA %A Vázquez-Islas G %A Campos-Ramos R %J Mar Biotechnol (NY) %V 23 %N 5 %D Oct 2021 %M 34647196 %F 3.727 %R 10.1007/s10126-021-10061-4 %X We investigated a time-course larval transcriptional analysis (RNA-seq) in the longfin yellowtail Seriola rivoliana, from hatching to day four at 22 °C, without providing zooplankton as food. Larval starvation is a critical physiological stage that must be prevented to ensure survival. However, the transcriptional mechanisms to endure starvation have not been investigated in marine fish. Differential gene expression showed newly day-specific transcriptome events during larval development. On day 1 (yolk sac absorption), the predominant upregulated developmental processes were larval growth, muscle and vision development, cytoskeletal structure, protein synthesis, protein and fat digestion-absorption, and hormone biosynthesis, whereas the cell cycle was suppressed. On day 2 (yolk sac exhaustion), a new stage of energy regeneration (ATP) was supplied by the oil drop reserve, whereas protein digestion-absorption and growth were suppressed. On day 3 (mouth opening and starvation), stress signals and nutrition deprivation upregulated the p53 signal and triggered autophagy and the AMP-activated protein kinase (AMPK) pathways as an alternative catabolic pathway to enduring starvation, and the circadian rhythm was established. On day 4 (starving and weakened larvae condition), autophagy supported subsequent protein synthesis, activated the immune system, and promoted estrogen signaling and skeleton renovation. However, larvae suppressed muscle development, vision and carbohydrate, and fat digestion-absorption and became lethargic, evidencing limited physiological support by autophagy to maintain survival without exogenous nutrition in this species.