%0 Journal Article %T Interleukin-18, IL-18 binding protein and IL-18 receptor expression in asthma: a hypothesis showing IL-18 promotes epithelial cell differentiation. %A Kaur D %A Chachi L %A Gomez E %A Sylvius N %A Brightling CE %J Clin Transl Immunology %V 10 %N 6 %D 2021 %M 34194747 %F 6.515 %R 10.1002/cti2.1301 %X UNASSIGNED: In asthma, genome-wide association studies have shown that interleukin-18 (IL-18) receptor 1 gene (IL-18R1) and sputum IL-18 are increased during exacerbations. However, the role of the IL-18 axis in bronchial epithelial function is unclear. To investigate IL-18, IL-18 binding protein (BP) and IL-18R expression in bronchial biopsies and sputum samples from patients with asthma, and to determine its functional role using in vitro bronchial epithelial cells.
UNASSIGNED: The expression of IL-18, IL-18BP and IL-18Rα was examined in subjects with asthma and healthy controls in bronchial biopsies by immunohistochemistry and IL-18 and IL-18BP release in sputum. In epithelial cells, the mRNA and protein expression of IL-18, IL-18BP, IL-18Rα and IL-18Rβ was assessed by qPCR, flow cytometry, Western blotting and immunofluorescence respectively. IL-18 function in epithelial cells was examined by intracellular calcium, wound repair, synthetic activation and epithelial differentiation changes.
UNASSIGNED: In biopsies from subjects with asthma, the IL-18 expression was not different in the lamina propria compared with controls but was decreased in the epithelium. In contrast, the IL-18BP was decreased in the lamina propria in asthma and was absent in the bronchial epithelium. IL-18 was released in sputum with IL-18BP elevated in patients with asthma. The IL-18Rα expression was not different between health and disease. In vitro, IL-18-stimulated bronchial epithelial cells increased intracellular calcium, wound repair, metabolic activity, morphological changes and epithelial cellular differentiation.
UNASSIGNED: In asthma, the dynamic interaction between IL-18, its cognate receptor and natural inhibitor is complex, with differences between airway compartments. Upregulation of IL-18 can promote epithelial activation and cellular differentiation.