%0 Journal Article %T Co-modification of calcium phosphate cement to achieve rapid bone regeneration in osteoporotic femoral condyle defect with lithium and aspirin. %A Tao ZS %A Zhou WS %A Zhang RT %A Li Y %A Xu HG %A Wei S %A Wang ZY %A Yang M %J Am J Transl Res %V 13 %N 3 %D 2021 %M 33841632 %F 3.94 %X Local application of lithium or aspirin with biological scaffold has been identified as a potent means to improve bone formation. In this study, lithium and aspirin modified calcium phosphate cement (Asp-Li/CPC) was prepared, and the feasibility of this biological scaffold in the treatment of osteoporotic bone defect was observed in vivo and in vitro. In vitro experiments confirmed that Asp-Li/CPC had better ability to promote MC3T3-E1 cells differentiation into osteoblasts, osteoblast mineralization and viability, and promote cell expression of ALP, OP, RUNX-2, OC and COL-1 protein than simple CPC or lithium modified CPC by MTT, Alizarin red staining and Western blot evaluation. In vivo experiments confirmed that Asp-Li/CPC presented the strongest effect on bone regeneration and bone mineralization through the comparison with CPC group and Li/CPC group with X-ray images, Micro-CT and Histological evaluation. RT-qPCR analysis showed that Asp-Li/CPC, Li/CPC group and CPC group demonstrated increased BMP2, Smad1, OPG than the OVX group (P<0.05), while Asp-Li/CPC exhibited decreased TNF-α, IFN-γ and RANKL than the OVX group (P<0.05). Experiments in vivo and in vitro show that Asp-Li/CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local inflammation and through BMP-2/Smad1 and OPG/RANKL signaling pathway.