%0 Journal Article %T Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. %A Krishnan RG %A Saraswathyamma B %J Anal Bioanal Chem %V 413 %N 27 %D Nov 2021 %M 33774711 %F 4.478 %R 10.1007/s00216-021-03282-y %X This work highlights the protocol employed for the simultaneous electroanalysis of tryptamine, serotonin and dopamine using a conducting poly-murexide-based electrode. To date, this is the first-of-its-kind report of simultaneous electrochemical determination of these three targets. Features of the developed electrode were identified by employing FE-SEM analysis. Under optimized conditions, the analytes underwent an irreversible electro-oxidation at the modified electrode surface, with a linear range of 0.5-40 μΜ, 0.4-40.4 μΜ and 0.5-40 μΜ for dopamine, serotonin and tryptamine, respectively. The electrolytic medium employed for the sensing was a phosphate-buffered solution with pH 7. The specificity of the developed electrode was also satisfactory in the presence of other biomolecules including L-phenylalanine, L-serine, glucose and ascorbic acid. Thus, the developed murexide-derived conducting-polymer-based electrode was used for the simultaneous sensing of the neurochemicals dopamine, serotonin and tryptamine. Electroanalysis was also demonstrated for these targets in human serum.