%0 Journal Article %T A Fasciclin Protein Is Essential for Laccase-Mediated Selective Phenol Coupling in Sporandol Biosynthesis. %A Thiele W %A Obermaier S %A Müller M %J ACS Chem Biol %V 15 %N 4 %D 04 2020 17 %M 32227858 %F 4.634 %R 10.1021/acschembio.0c00025 %X The biaryl scaffold, often showing axial chirality, is a common feature of various fungal natural products. Their biosynthesis requires an oxidative phenol-coupling reaction usually catalyzed by laccases, cytochrome P450 enzymes, or peroxidases. The combination of a laccase and a fasciclin domain-containing (fas) protein is encoded in many biosynthetic gene clusters of biaryls from ascomycetes. However, such phenol-coupling systems including their regio- and stereoselectivity have not been characterized so far. Elucidating the biosynthesis of the antiparasitic binaphthalene sporandol from Chrysosporium merdarium, we demonstrate the combination of a laccase and a fas protein to be crucial for the dimerization reaction. Only the heterologous coproduction of the laccase and the fas protein led to a functional phenol-coupling system, whereas the laccase alone showed no coupling activity. Thus, the laccase/fas protein combination forms an independent group of phenol-coupling enzymes that determines the coupling activity and selectivity of the reaction concurrently and applies to the biosynthesis of many fungal natural products with a biaryl scaffold.