%0 Journal Article %T Mechanism of bio-macromolecule denaturation on solid-liquid surface of ion-exchange chromatographic media - A case study for inactivated foot-and-mouth disease virus. %A Yang Y %A Song Y %A Lin X %A Li S %A Li Z %A Zhao Q %A Ma G %A Zhang S %A Su Z %J J Chromatogr B Analyt Technol Biomed Life Sci %V 1142 %N 0 %D Apr 2020 1 %M 32145639 %F 3.318 %R 10.1016/j.jchromb.2020.122051 %X Destruction of assembly structures has been identified as a major cause for activity loss of virus and virus-like particles during their chromatographic process. A deep insight into the denaturation process at the solid-liquid interfaces is important for rational design of purification. In this study, in-situ differential scanning calorimetry (DSC) was employed to study the dissociation process of inactivated foot-and-mouth disease virus (FMDV) during ion exchange chromatography (IEC) at different levels of pH. The intact FMDV known as 146S and the dissociation products were quantified by high performance size exclusion chromatography (HPSEC) and the thermo-stability of 146S on-column was monitored in-situ by DSC. Serious dissociation was found at pH 7.0 and pH 8.0, leading to low 146S recoveries of 12.3% and 43.7%, respectively. The elution profiles from IEC and HPSEC combined with the thermal transition temperatures of 146S dissociation (Tm1) from DSC suggested two denaturation mechanisms that the 146S dissociation occurred on-column after adsorption at pH 7.0 and during elution step at pH 8.0. By appending different excipients including sucrose, the improvement of 146S recovery and reduced dissociation was found highly correlated to increment of 146S stability on-column detected by DSC. The highest recovery of 99.9% and the highest Tm1 of 54.49 °C were obtained at pH 9.0 with 20% (w/v) sucrose. According to chromatographic behaviors and Tm1, three different dissociation processes in IEC were discussed. The study provides a perspective to understand the denaturation process of assemblies during chromatography, and also supplies a strategy to improve assembly recovery.