%0 Journal Article %T Impact of temperature on Legionella pneumophila, its protozoan host cells, and the microbial diversity of the biofilm community of a pilot cooling tower. %A Paniagua AT %A Paranjape K %A Hu M %A Bédard E %A Faucher SP %J Sci Total Environ %V 712 %N 0 %D Apr 2020 10 %M 31931228 %F 10.753 %R 10.1016/j.scitotenv.2019.136131 %X Legionella pneumophila is a waterborne bacterium known for causing Legionnaires' Disease, a severe pneumonia. Cooling towers are a major source of outbreaks, since they provide ideal conditions for L. pneumophila growth and produce aerosols. In such systems, L. pneumophila typically grow inside protozoan hosts. Several abiotic factors such as water temperature, pipe material and disinfection regime affect the colonization of cooling towers by L. pneumophila. The local physical and biological factors promoting the growth of L. pneumophila in water systems and its spatial distribution are not well understood. Therefore, we built a lab-scale cooling tower to study the dynamics of L. pneumophila colonization in relationship to the resident microbiota and spatial distribution. The pilot was filled with water from an operating cooling tower harboring low levels of L. pneumophila. It was seeded with Vermamoeba vermiformis, a natural host of L. pneumophila, and then inoculated with L. pneumophila. After 92 days of operation, the pilot was disassembled, the water was collected, and biofilm was extracted from the pipes. The microbiome was studied using 16S rRNA and 18S rRNA genes amplicon sequencing. The communities of the water and of the biofilm were highly dissimilar. The relative abundance of Legionella in water samples reached up to 11% whereas abundance in the biofilm was extremely low (≤0.5%). In contrast, the host cells were mainly present in the biofilm. This suggests that L. pneumophila grows in host cells associated with biofilm and is then released back into the water following host cell lysis. In addition, water temperature shaped the bacterial and eukaryotic community of the biofilm, indicating that different parts of the systems may have different effects on Legionella growth.