%0 Journal Article %T Dynamic mRNA Expression Analysis of the Secondary Palatal Morphogenesis in Miniature Pigs. %A Liu J %A Chen J %A Yuan D %A Sun L %A Fan Z %A Wang S %A Du J %J Int J Mol Sci %V 20 %N 17 %D Sep 2019 1 %M 31480549 %F 6.208 %R 10.3390/ijms20174284 %X Normal mammalian palatogenesis is a complex process that requires the occurrence of a tightly regulated series of specific and sequentially regulated cellular events. Cleft lip/palate (CLP), the most frequent craniofacial malformation birth defects, may occur if any of these events undergo abnormal interference. Such defects not only affect the patients, but also pose a financial risk for the families. In our recent study, the miniature pig was shown to be a valuable alternative large animal model for exploring human palate development by histology. However, few reports exist in the literature to document gene expression and function during swine palatogenesis. To better understand the genetic regulation of palate development, an mRNA expression profiling analysis was performed on miniature pigs, Sus scrofa. Five key developmental stages of miniature pigs from embryonic days (E) 30-50 were selected for transcriptome sequencing. Gene expression profiles in different palate development stages of miniature pigs were identified. Nine hundred twenty significant differentially expressed genes were identified, and the functional characteristics of these genes were determined by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Some of these genes were associated with HH (hedgehog), WNT (wingless-type mouse mammary tumor virus integration site family), and MAPK (mitogen-activated protein kinase) signaling, etc., which were shown in the literature to affect palate development, while some genes, such as HIP (hedgehog interacting protein), WNT16, MAPK10, and LAMC2 (laminin subunit gamma 2), were additions to the current understanding of palate development. The present study provided a comprehensive analysis for understanding the dynamic gene regulation during palate development and provided potential ideas and resources to further study normal palate development and the etiology of cleft palate.