%0 Journal Article %T Genetic characterization of susceptible and multi-drug resistant Mannheimia haemolytica isolated from high-risk stocker calves prior to and after antimicrobial metaphylaxis. %A Snyder ER %A Alvarez-Narvaez S %A Credille BC %J Vet Microbiol %V 235 %N 0 %D Aug 2019 %M 31282368 %F 3.246 %R 10.1016/j.vetmic.2019.06.012 %X Bovine Respiratory Disease (BRD) is a major threat to animal health and welfare in the cattle industry. Strains of Mannheimia haemolytica (Mh) that are resistant to multiple classes of antimicrobials are becoming a major concern in the beef industry, as the frequency of isolation of these strains has been increasing. Mobile genetic elements, such as integrative conjugative elements (ICE), are frequently implicated in this rapid increase in multi-drug resistance. The objectives of the current study were to determine the genetic relationship between the isolates collected at arrival before metaphylaxis and at revaccination after metaphylaxis, to identify which resistance genes might be present in these isolates, and to determine if they were carried on an ICE. Twenty calves culture positive for Mh at arrival and revaccination were identified, and a total of 48 isolates with unique susceptibility profiles (26 from arrival, and 22 from revaccination) were submitted for whole-genome sequencing (WGS). A phylogenetic tree was constructed, showing the arrival isolates falling into four clades, and all revaccination isolates within one clade. All revaccination isolates, and one arrival isolate, were positive for the presence of an ICE. Three different ICEs with resistance gene modules were identified. The resistance genes aphA1, strA, strB, sul2, floR, erm42, tetH/R, aadB, aadA25, blaOXA-2, msrE, mphE were all located within an ICE. The gene bla-ROB1 was also present in the isolates, but was not located within an ICE.