%0 Case Reports %T Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. %A Himmelreich N %A Dimitrov B %A Geiger V %A Zielonka M %A Hutter AM %A Beedgen L %A Hüllen A %A Breuer M %A Peters V %A Thiemann KC %A Hoffmann GF %A Sinning I %A Dupré T %A Vuillaumier-Barrot S %A Barrey C %A Denecke J %A Kölfen W %A Düker G %A Ganschow R %A Lentze MJ %A Moore S %A Seta N %A Ziegler A %A Thiel C %J Hum Mutat %V 40 %N 7 %D 07 2019 %M 31067009 %F 4.7 %R 10.1002/humu.23764 %X ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.