%0 Journal Article %T Dynamic Contrast-Enhanced T1-Weighted Perfusion Magnetic Resonance Imaging Identifies Glioblastoma Immunohistochemical Biomarkers via Tumoral and Peritumoral Approach: A Pilot Study. %A Ozturk K %A Soylu E %A Tolunay S %A Narter S %A Hakyemez B %J World Neurosurg %V 128 %N 0 %D Aug 2019 %M 31003026 %F 2.21 %R 10.1016/j.wneu.2019.04.089 %X OBJECTIVE: We aimed to evaluate the usefulness of dynamic contrast-enhanced T1-weighted perfusion magnetic resonance imaging (DCE-pMRI) to predict certain immunohistochemical (IHC) biomarkers of glioblastoma (GB) in this pilot study.
METHODS: We retrospectively reviewed 36 patients (male/female, 25:11; mean age, 53 years; age range, 29-85 years) who had pretreatment DCE-pMRI with IHC analysis of their excised GBs. Regions of interest of the enhancing tumor (ER) and nonenhancing peritumoral region (NER) were used to calculate DCE-pMRI parameters of volume transfer constant, back flux constant, volume of the extravascular extracellular space, initial area under enhancement curve, and maximum slope. IHC biomarkers including Ki-67 labeling index, epidermal growth factor receptor (EGFR), oligodendrocyte transcription factor 2 (OLIG2), isocitrate dehydrogenase 1 (IDH1), and p53 mutation status were determined. The imaging metrics of GB with IHC markers were compared using the Kruskal-Wallis test and Spearman correlation analysis.
RESULTS: Among 30 patients with available IDH1 status, 14 patients (46.6%) had IDH1 mutation. EGFR amplification was present in 24/36 (66.6%) patients. Mean Ki-67 labeling index was 29% (range, 1.5%-80%). p53 mutation was present in 20/36 GBs (55%), whereas OLIG2 expression was positive in 29/36 GBs (80.5%). Various DCE-pMRI parameters gathered from the ER and NER were significantly correlated with IDH1 mutation, EGFR amplification, and OLIG2 expression (P < 0.05). Ki-67 labeling index showed a strong positive correlation with initial area under enhancement curve (r = 0.619; P < 0.001).
CONCLUSIONS: DCE-pMRI could determine surrogate IHC biomarkers in GB via tumoral and peritumoral approach, potential targets for individualized treatment protocols.