%0 Journal Article %T A combination of Korean mistletoe extract and resistance exercise retarded the decline in muscle mass and strength in the elderly: A randomized controlled trial. %A Lim NJ %A Shin JH %A Kim HJ %A Lim Y %A Kim JY %A Lee WJ %A Han SJ %A Kwon O %J Exp Gerontol %V 87 %N 0 %D 01 2017 %M 27845200 %F 4.253 %R 10.1016/j.exger.2016.11.003 %X Given the increased concerns about the degenerative decline in the physical performance of the elderly, there is a need for developing effective strategies to suppress the age-related loss of skeletal muscle mass and functional capacity through a lifestyle intervention. This randomized controlled trial examined whether a combination of Korean mistletoe extract (KME) supplement and exercise affected muscle mass, muscle function, and targeted molecular expressions. Sixty-seven subjects aged 55-75years were assigned to placebo, low-dose (1g/d), or high-dose (2g/d) of KME for 12weeks. The body composition was significantly changed in the high-dose group during the intervention period as determined by skeletal muscle mass (P=0.040), fat free mass (P=0.042), soft lean mass (P=0.023), skeletal muscle index (P=0.041), fat-free mass index (P=0.030), percent body fat (P=0.044), and fat mass to lean mass ratio (P=0.030). Knee strength was measured by Cybex, demonstrating a significant effect in the KME groups compared to the placebo group (P=0.026 for peak torque and P=0.057 for set total work), which was more pronounced after adjusting for age, gender, protein, and energy intake (P=0.009 for peak torque and P=0.033 for set total work). The dynamic balance ability was remarkably improved in the high-dose group over a 12-week period as determined by Timed "Up and Go" (P=0.005 for fast walk test and P=0.024 for ordinary walk test). Consistent with these results, RT-PCR, multiplex analyses, and immunocytofluorescence staining revealed that a high-dose KME supplementation was effective for suppressing intracellular pathways related to muscle protein degradation, but stimulating those related to myogenesis. In particular, significant differences were found in atrogin-1 mRNA (P=0.002 at a single administration and P=0.001 at a 12-week administration), myogenin mRNA (P<0.0001 at a single administration and P=0.040 at a 12-week administration), and insulin growth factor 1 receptor phosphorylation (P=0.002 at a 12-week administration). These results suggest that KME supplementation together with resistance exercise may be useful in suppressing the age-related loss of muscle mass and strength in the elderly.