%0 Journal Article %T Foxp3-dependent transformation of human primary CD4+ T lymphocytes by the retroviral protein tax. %A Chen L %A Liu D %A Zhang Y %A Zhang H %A Cheng H %J Biochem Biophys Res Commun %V 466 %N 3 %D Oct 2015 23 %M 26381169 %F 3.322 %R 10.1016/j.bbrc.2015.09.063 %X The retroviral Tax proteins of human T cell leukemia virus type 1 and 2 (HTLV-1 and -2) are highly homologous viral transactivators. Both viral proteins can immortalize human primary CD4+ memory T cells, but when expressed alone they rarely transform T cells. In the present study, we found that the Tax proteins displayed a differential ability to immortalize human CD4+Foxp3+ T cells with characteristic expression of CTLA-4 and GITR. Because epidermal growth factor receptor (EGFR) was reportedly expressed and activated in a subset of CD4+Foxp3+ T cells, we introduced an activated EGFR into Tax-immortalized CD4+Foxp3+ T cells. We observed that these modified cells were grown independently of exogenous IL-2, correlating with a T cell transformation phenotype. In Tax-immortalized CD4+Foxp3- T cells, ectopic expression of Foxp3 was a prerequisite for Tax transformation of T cells. Accordingly, treatment of the transformed T cells with erlotinib, a selective inhibitor of EGFR, induced degradation of EGFR in lysosome, consequently causing T cell growth inhibition. Further, we identified autophagy as a crucial cellular survival pathway for the transformed T cells. Silencing key autophagy molecules including Beclin1, Atg5 and PI3 kinase class III (PI3KC3) resulted in drastic impairment of T cell growth. Our data, therefore, unveiled a previously unidentified role of Foxp3 in T cell transformation, providing a molecular basis for HTLV-1 transformation of CD4+Foxp3+ T cells.