%0 Journal Article %T Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici. %A Kilaru S %A Steinberg G %J Fungal Genet Biol %V 79 %N 0 %D Jun 2015 %M 26092792 %F 3.883 %R 10.1016/j.fgb.2015.03.017 %X Many pathogenic fungi are genetically tractable. Analysis of their cellular organization and invasion mechanisms underpinning virulence determinants profits from exploiting such molecular tools as fluorescent fusion proteins or conditional mutant protein alleles. Generation of these tools requires efficient cloning methods, as vector construction is often a rate-limiting step. Here, we introduce an efficient yeast recombination-based cloning (YRBC) method to construct vectors for the fungus Zymoseptoria tritici. This method is of low cost and avoids dependency on the availability of restriction enzyme sites in the DNA sequence, as needed in more conventional restriction/ligation-based cloning procedures. Furthermore, YRBC avoids modification of the DNA of interest, indeed this potential risk limits the use of site-specific recombination systems, such as Gateway cloning. Instead, in YRBC, multiple DNA fragments, with 30bp overlap sequences, are transformed into Saccharomyces cerevisiae, whereupon homologous recombination generates the vector in a single step. Here, we provide a detailed experimental protocol and four vectors, each encoding a different dominant selectable marker cassette, that enable YRBC of constructs to be used in the wheat pathogen Z. tritici.