%0 Journal Article %T Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women. %A Isacco L %A Thivel D %A Duclos M %A Aucouturier J %A Boisseau N %J Diabetes Metab %V 40 %N 3 %D Jun 2014 %M 24698815 %F 8.254 %R 10.1016/j.diabet.2014.02.006 %X OBJECTIVE: Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women.
METHODS: Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans.
RESULTS: The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P < 0.001). Total and abdominal fat mass measurements were negatively associated with Lipox(max) (r = -0.57 and r = -0.64, respectively; P < 0.01) and MLOR [r = -0.63 (P < 0.01) and r = -0.76 (P < 0.001), respectively].
CONCLUSIONS: These findings indicate that, in normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR.