%0 Journal Article %T Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway. %A Su J %A Zou W %A Cai W %A Chen X %A Wang F %A Li S %A Ma W %A Cao Y %J Eur J Pharmacol %V 723 %N 0 %D Jan 2014 15 %M 24445019 %F 5.195 %R 10.1016/j.ejphar.2013.10.025 %X Contrast medium-induced acute kidney injury (CI-AKI) remains a leading cause of iatrogenic, drug-induced acute renal failure. This study aimed to investigate the protective effects of atorvastatin against renal tubular cell apoptosis in diabetic rats and the related mechanisms. CI-AKI was induced by intravenous administration of iopromide (12ml/kg) in streptozotocin-induced diabetic rats. Atorvastatin (ATO) was administered intragastrically at the dose of 5, 10 and 30mg/kg/d in different groups, respectively, for 5 days before iopromide injection. Renal function parameters, kidney histology, renal tubular cell apoptosis, the expression of apoptosis regulatory proteins, caspase-3 and Rho-associated protein kinase 1 (ROCK-1), and the phosphorylation of myosin phosphatase target subunit -1 (MYPT-1), were determined. Atorvastatin was shown to notably ameliorate contrast medium induced medullary damage, restore renal function, and suppress renal tubular apoptosis. Meanwhile, atorvastatin up-regulated the expression of Bcl-2, down-regulated the expression of Bax, caspase-3 and ROCK-1, restored the ratio of Bcl-2/Bax, and suppressed the phosphorylation of MYPT-1 in a dose-dependent manner. Thus, atorvastatin pretreatment could dose-dependently ameliorate the development of CI-AKI, which was partly attributed to its suppression of renal tubular cell apoptosis by inhibiting the Rho/ROCK pathway.