%0 Journal Article %T Review of vitreous islet cryopreservation: Some practical issues and their resolution. %A Taylor MJ %A Baicu S %J Organogenesis %V 5 %N 3 %D Jul 2009 %M 20046679 %F 2.316 %R 10.4161/org.5.3.9812 %X Transplantation of pancreatic islets for the treatment of diabetes mellitus is widely anticipated to eventually provide a cure once a means for preventing rejection is found without reliance upon global immunosuppression. Long-term storage of islets is crucial for the organization of transplantation, islet banking, tissue matching, organ sharing, immuno-manipulation and multiple donor transplantation. Existing methods of cryopreservation involving freezing are known to be suboptimal providing only about 50% survival. The development of techniques for ice-free cryopreservation of mammalian tissues using both natural and synthetic ice blocking molecules, and the process of vitrification (formation of a glass as opposed to crystalline ice) has been a focus of research during recent years. These approaches have established in other tissues that vitrification can markedly improve survival by circumventing ice-induced injury. Here we review some of the underlying issues that impact the vitrification approach to islet cryopreservation and describe some initial studies to apply these new technologies to the long-term storage of pancreatic islets. These studies were designed to optimize both the pre-vitrification hypothermic exposure conditions using newly developed media and to compare new techniques for ice-free cryopreservation with conventional freezing protocols. Some practical constraints and feasible resolutions are discussed. Eventually the optimized techniques will be applied to clinical allografts and xenografts or genetically-modified islets designed to overcome immune responses in the diabetic host.