%0 Comparative Study %T Slow binding of metal ions to pigeon liver malic enzyme: a general case. %A Hung HC %A Chang GG %A Yang Z %A Tong L %J Biochemistry %V 39 %N 46 %D Nov 2000 21 %M 11087357 %F 3.321 %R 10.1021/bi001534f %X Pigeon liver malic enzyme was inhibited by lutetium ion through a slow-binding process, which resulted in a concave down tracing of the enzyme activity assay. The fast initial rates were independent of lutetium ion concentration, while the slow steady-state rates decreased with increasing Lu(3+) concentration. The observed rate constant for the transition from initial rate to steady-state rate, k(obs), exhibited saturation kinetics as a function of Lu(3+) concentration, suggesting the involvement of an isomerization process between two enzyme forms (R-form and T-form). The binding affinity of Lu(3+) to the R-form is weaker (K(d,Lu) = 14 microM) than that of Mn(2+) (K(m,Mn) = 1.89 microM); however, Lu(3+) has much tighter binding affinity with the T-form ( = 0.83 microM). Lu(3+) was shown to be a competitive inhibitor with respect to Mn(2+), which suggests that Lu(3+) and Mn(2+) are competing for the same metal binding site of the enzyme. These observations are in accordance with the available crystal structure information, which shows a distorted active site region of the Lu(3+)-containing enzyme. Other divalent cations, i.e., Fe(2+), Cu(2+), or Zn(2+), also act as time-dependent slow inhibitors for malic enzyme. The dynamic quenching constants of the intrinsic fluorescence for the metal-free and Lu(3+)-containing enzymes are quite different, indicating the conformational differences between the two enzyme forms. The secondary structure of these two enzyme forms, on the other hand, was not changed. The above results indicated that replacement of the catalytically essential Mn(2+) by other metal ions leads to a slow conformational change of the enzyme and consequently alters the geometry of the active site. The transformed enzyme conformation, however, is unfavorable for catalysis. Both the chemical nature of the metal ion and its correct coordination in the active site are essential for catalysis.