关键词: STARR-seq enhancer single nucleotide polymorphism transcriptional regulation

Mesh : Enhancer Elements, Genetic High-Throughput Nucleotide Sequencing / methods Humans Animals Sequence Analysis, DNA / methods

来  源:   DOI:10.16288/j.yczz.24-149

Abstract:
Self-transcribing active regulatory region sequencing (STARR-seq) is a high-throughput sequencing method capable of simultaneously discovering and validating all enhancers within the genome. In this method, candidate sequences are inserted into plasmid vectors and electroporated into cells. Acting as both enhancers and target genes, the self-transcription of these sequences will also be enhanced by themselves. By sequencing the transcriptome and comparing the results with the non-inserted control, the locations and activity of enhancers can be determined. In traditional enhancer discovery strategies, the chromatin open regions and transcription active regions were sequenced and predicted as enhancers. However, the activity of these putative enhancers could only be validated one by one without a high-throughput method. STARR-seq solved this limitation, allowing simultaneous enhancers discovery and activity validation in a high-throughput manner. Since the introduction of STARR-seq, it has been widely used to discover enhancers and validate enhancer activity in a number of organisms and cells. In this review, we present the traditional enhancer prediction methods and the basic principles, development history, specific applications of STARR-seq, and its future prospects, aiming to provide a reference for researchers in related fields conducting enhancer studies.
自转录活性调节区测序(self-transcribing active regulatory region sequencing,STARR-seq)是一种可发现并同时验证全基因组增强子活性的高通量测序方法。其原理为:将待验证序列插入质粒载体并电转入细胞中,该序列在作为增强子提高靶基因转录的同时,其本身也作为靶基因被增强转录。通过对转录组进行测序,并对比未插入片段的测序结果,可获得增强子在基因组位置及活性的信息。在传统增强子研究方法中,通过对染色质开放区域和转录活性区域进行测序以预测增强子,但只能逐一验证预测结果,无法高通量验证增强子活性。STARR-seq技术解决了上述缺陷,可在对全基因组增强子高通量挖掘的同时,对其活性进行可靠的验证。自STARR-seq技术发明以来,已被广泛运用于不同物种与细胞中的增强子发现及活性验证研究。本文对传统增强子预测方法以及STARR-seq技术的基本原理、发展历史和具体运用进行了介绍,并对其发展前景进行展望,以期为后续增强子相关领域研究人员提供参考。.
摘要:
暂无翻译
公众号