关键词: Electrochemical analysis Electrochemical sensors Electrochemistry Flexible electronics Laser engraved graphene Laser induced graphene Rapid prototyping Sensors Stencil-masking Wearables

Mesh : Graphite / chemistry Biosensing Techniques / instrumentation Wearable Electronic Devices Humans Equipment Design Lasers Lasers, Gas

来  源:   DOI:10.1016/j.bios.2024.116649   PDF(Pubmed)

Abstract:
The advent of wearable sensing platforms capable of continuously monitoring physiological parameters indicative of health status have resulted in a paradigm shift for clinical medicine. The accessibility and adaptability of such portable, unobtrusive devices enables proactive, personalized care based on real-time physiological insights. While wearable sensing platforms exhibit powerful capabilities for continuously monitoring physiological parameters, device fabrication often requires specialized facilities and technical expertise, restricting deployment opportunities and innovation potential. The recent emergence of rapid prototyping approaches to sensor fabrication, such as laser-induced graphene (LIG), provides a pathway for circumventing these barriers through low-cost, scalable fabrication. However, inherent limitations in laser processing restrict the spatial resolution of LIG-based flexible electronic devices to the minimum laser spot size. For a CO2 laser-a commonly reported laser for device production-this corresponds to a feature size of ∼120 μm. Here, we demonstrate a facile, low-cost stencil-masking technique to reduce the minimum resolvable feature size of a LIG-based device from 120 ± 20 μm to 45 ± 3 μm when fabricated by CO2 laser. Characterization of device performance reveals this stencil-masked LIG (s-LIG) method yields a concomitant improvement in electrical properties, which we hypothesize is the result of changes in macrostructure of the patterned LIG. We showcase the performance of this fabrication method via production of common sensors including temperature and multi-electrode electrochemical sensors. We fabricate fine-line microarray electrodes not typically achievable via native CO2 laser processing, demonstrating the potential of the expanded design capabilities. Comparing microarray sensors made with and without the stencil to traditional macro LIG electrodes reveals the s-LIG sensors have significantly reduced capacitance for similar electroactive surface areas. Beyond improving sensor performance, the increased resolution enabled by this metal stencil technique expands capabilities for scalable fabrication of high-performance wearable sensors in low-resource settings without reliance on traditional fabrication pathways.
摘要:
能够连续监测指示健康状况的生理参数的可穿戴感测平台的出现已经导致临床医学的范式转变。这种便携式的可访问性和适应性,不显眼的设备可以实现主动,基于实时生理见解的个性化护理。虽然可穿戴传感平台展示了持续监测生理参数的强大功能,器件制造通常需要专门的设施和技术专长,限制部署机会和创新潜力。最近出现的传感器制造的快速原型方法,如激光诱导石墨烯(LIG),提供了通过低成本规避这些障碍的途径,可扩展的制造。然而,激光加工的固有限制将基于LIG的柔性电子设备的空间分辨率限制为最小激光光斑尺寸。对于CO2激光器-通常报道的用于设备生产的激光器-这对应于〜120μm的特征尺寸。这里,我们展示了一个简单的,低成本模板掩模技术,以减少最小可分辨特征尺寸的LIG基于设备的120±20μm到45±3μm时,由CO2激光制造。器件性能的表征揭示了这种模版掩蔽的LIG(s-LIG)方法在电性能方面产生了伴随的改善,我们假设这是图案化LIG宏观结构变化的结果。我们通过生产包括温度和多电极电化学传感器的普通传感器来展示这种制造方法的性能。我们制造通常无法通过天然CO2激光加工实现的细线微阵列电极,展示了扩展设计能力的潜力。将具有和不具有模板的微阵列传感器与传统的宏LIG电极进行比较揭示了s-LIG传感器对于类似的电活性表面区域具有显著降低的电容。除了提高传感器性能,这种金属模板技术可以提高分辨率,从而扩展了在低资源环境下可扩展制造高性能可穿戴传感器的能力,而无需依赖传统的制造途径。
公众号