关键词: Antioxidant activity Green solvent NO RNA-seq Toxicity

Mesh : Arabidopsis / drug effects genetics growth & development Nitric Oxide / metabolism Imidazoles / toxicity Ionic Liquids / toxicity Germination / drug effects Chlorophyll / metabolism Seedlings / drug effects growth & development

来  源:   DOI:10.1016/j.ecoenv.2024.116845

Abstract:
Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.
摘要:
离子液体(IL)具有许多有益的特性,广泛用于各个领域。尽管他们的效用,ILs的植物毒性方面鲜为人知。在转录组水平和一氧化氮(NO)在此过程中的作用尤其如此。在这里,我们研究了内源性NO降低拟南芥ILs毒性的机制。我们检查了两种基于咪唑的IL(IIL)对三种拟南芥系的影响,每个都以不同的内源性NO水平为特征,使用生理和转录组学方法的组合。IIL损害种子萌发,幼苗发育,叶绿素含量,和拟南芥的氧化还原稳态。值得注意的是,1,3-二丁基咪唑溴化物的毒性大于1-丁基-3-甲基咪唑氯化物。Nox1,一种NO水平升高的突变体,抵抗力增强,而nia1nia2,一种NO水平降低的突变体,与野生型相比具有增加的易感性。RNA测序结果表明,NO通过调节叶绿素和次生代谢产物的代谢来减轻IIL诱导的植物毒性,通过加强抗氧化防御系统。这些发现说明了响应IIL胁迫的复杂分子网络,并揭示了内源性NO作为植物胁迫生理学缓解因子的潜力。
公众号