关键词: carnosine label-free metal-ion functionalization optical sensor peptides porous silicon reconfiguration regeneration

Mesh : Animals Mice Silicon Dioxide / chemistry Biosensing Techniques / instrumentation methods Nanostructures / chemistry Porosity Adenosine Triphosphate / analysis chemistry Copper / chemistry Metals / chemistry

来  源:   DOI:10.1021/acsami.4c08860   PDF(Pubmed)

Abstract:
Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.
摘要:
化学传感器的重新配置,旨在作为传感器适应新操作场景的能力,例如,新的目标分析物,可能会改变游戏规则,并能够对医疗保健中发生的动态变化做出快速且具有成本效益的反应,环境,工业水平。然而,这仍然是一个挑战,迄今为止,已经报道了传感器重新配置的罕见例子。这里,我们报告了一种可重构的无标记光学传感器,该传感器利用螯合剂在纳米结构的多孔二氧化硅(PSiO2)光学传感器上对金属离子的通用固定来检测不同的生物分子。首先,我们显示了不同金属离子在PSiO2表面的可逆接枝,即,Ni2+,Cu2+,Zn2+,和Fe3+,它可以介导与不同生物分子的相互作用,并在温和的条件下切换。然后,我们证明了传感器在两个水平上的重新配置:1)将PSiO2表面上的金属离子从Cu2转换为Zn2,并测试了Cu2功能化和Zn2重新配置的设备对二肽肌肽(CAR)的传感能力,利用众所周知的CAR对二价金属离子的螯合能力;和2)对不同目标分析物的Cu2+功能化PSiO2传感器的重新配置,即,核苷酸三磷酸腺苷(ATP),用Fe3+离子切换Cu2+以利用通过磷酸基团与ATP的相互作用。Cu2+功能化和Zn2+重新配置的传感器在CAR检测中显示出有效的传感性能,还在鼠脑的组织样本中进行了评估,Fe3+-重新配置的传感器对ATP也是如此,从而证明了具有所提出的表面化学的传感器的有效重新配置。
公众号